SQL vs Pandas Operation Comparison (en/de/zh)

In data analysis and processing, Pandas and SQL each have their own strengths and ideal use cases.

SQL excels at efficiently querying, filtering, aggregating, and joining large datasets stored in databases,while Pandas offers flexible, Python-based tools for data cleaning, exploration, and visualization.

In real-world workflows, analysts often switch between the two — for example, using SQL to extract raw data, then Pandas to perform deeper analysis. Some people may feel more comfortable with SQL, others with Pandas, but learning to translate commands/functions between them helps bridge that gap. By comparing their syntax and logic, you can not only understand both tools more intuitively but also choose the most efficient one for each task.

Below is a list of the most common operations, showing their names in English (EN), German (DE), and Chinese (ZH), along with the corresponding SQL and Pandas commands/functions.


🧱 Basic Operations

English Deutsch 中文 SQL Pandas
Read Data Daten lesen 读取数据 SELECT * FROM table; df = pd.read_csv('file.csv')
View first rows Erste Zeilen anzeigen 查看前几行 SELECT * FROM table LIMIT 5; df.head(5)
View structure Struktur anzeigen 查看表结构 DESCRIBE table; df.info()
Summary statistics Zusammenfassung 查看统计摘要 SELECT AVG(col), MIN(col), MAX(col) FROM table; df.describe()

🎯 Selection and Filtering

English Deutsch 中文 SQL Pandas
Select columns Spalten auswählen 选择列 SELECT col1, col2 FROM table; df[['col1', 'col2']]
Filter rows Zeilen filtern 条件过滤 SELECT * FROM table WHERE col > 10; df[df['col'] > 10]
Multiple conditions Mehrere Bedingungen 多条件过滤 WHERE col1 > 10 AND col2 = 'A' df[(df['col1'] > 10) & (df['col2'] == 'A')]
Sort rows Sortieren 排序 ORDER BY col DESC df.sort_values('col', ascending=False)
Remove duplicates Duplikate entfernen 去重 SELECT DISTINCT col FROM table; df['col'].drop_duplicates()

🔄 Aggregation and Grouping

English Deutsch 中文 SQL Pandas
Group and aggregate Gruppieren und Aggregieren 分组聚合 SELECT col, AVG(val) FROM table GROUP BY col; df.groupby('col')['val'].mean()
Multiple aggregations Mehrere Aggregationen 多重聚合 SELECT col, COUNT(*), SUM(val) FROM table GROUP BY col; df.groupby('col').agg({'val': ['count', 'sum']})
Count rows Zeilen zählen 计数 SELECT COUNT(*) FROM table; len(df) or df.shape[0]

🔗 Joins

English Deutsch 中文 SQL Pandas
Inner join Inner Join 内连接 SELECT * FROM A INNER JOIN B ON A.id = B.id; pd.merge(A, B, on='id', how='inner')
Left join Left Join 左连接 LEFT JOIN pd.merge(A, B, on='id', how='left')
Right join Right Join 右连接 RIGHT JOIN pd.merge(A, B, on='id', how='right')
Full outer join Vollständiger Join 全连接 FULL OUTER JOIN pd.merge(A, B, on='id', how='outer')

🧩 Window Functions

English Deutsch 中文 SQL Pandas
Ranking Rangfolge 排名 RANK() OVER (PARTITION BY col ORDER BY val) df['rank'] = df.groupby('col')['val'].rank()
Rolling average Gleitender Durchschnitt 滚动平均 AVG(val) OVER (ORDER BY date ROWS 3 PRECEDING) df['rolling_avg'] = df['val'].rolling(3).mean()

🧮 Data Modification

English Deutsch 中文 SQL Pandas
Add column Spalte hinzufügen 新增列 ALTER TABLE ADD col_new ... df['col_new'] = df['col1'] + df['col2']
Update values Werte aktualisieren 更新列 UPDATE table SET col = ... WHERE ... df.loc[df['col1']>0, 'col2'] = 'Yes'
Delete column Spalte löschen 删除列 ALTER TABLE DROP COLUMN col; df.drop('col', axis=1, inplace=True)
Delete rows Zeilen löschen 删除行 DELETE FROM table WHERE col < 0; df = df[df['col'] >= 0]

📦 Merging and Stacking

English Deutsch 中文 SQL Pandas
Union (distinct) Vereinigung ohne Duplikate UNION(去重) SELECT * FROM A UNION SELECT * FROM B; pd.concat([A, B]).drop_duplicates()
Union all Vereinigung mit Duplikaten UNION ALL(保留重复) SELECT * FROM A UNION ALL SELECT * FROM B; pd.concat([A, B], ignore_index=True)

🧹 Miscellaneous Operations

English Deutsch 中文 SQL Pandas
Rename column Spalte umbenennen 重命名列 SELECT col AS new_name FROM table; df.rename(columns={'col': 'new_name'})
Subquery Unterabfrage 子查询 SELECT * FROM (SELECT ...) AS sub; Use intermediate variable: sub = df[df['x']>0]
Conditional column Bedingte Spalte 条件列 CASE WHEN col>0 THEN 'pos' ELSE 'neg' END np.where(df['col']>0, 'pos', 'neg')
Null handling Null-Werte behandeln 空值处理 IS NULL / IS NOT NULL df.isna() / df.notna()
Fill nulls Null-Werte auffüllen 填充空值 COALESCE(col, 0) df['col'].fillna(0)

⚠️ Note

Most SQL and Pandas operations above correspond closely, but a few points to be aware of:

  • df.describe() returns additional statistics beyond SQL’s AVG, MIN, and MAX. For exact correspondence, use individual aggregation functions.
  • Pandas rolling() requires sorting (e.g., by date) to fully match SQL window functions.
  • df.groupby().rank() may use a different ranking method than SQL’s RANK(). Use method='min' or method='dense' to align results if needed.

Tip:

If you often switch between SQL and Pandas, try libraries like pandasql, duckdb, or polars to query DataFrames using SQL syntax :)




Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Data Profiling: pandas, YData-Profiling, or YData-SDK?
  • Complete SSH Guide for Beginners: Generating, Naming and Mananing SSH Keys.
  • How to Use Multiple GitHub Accounts with Different SSH Keys
  • Fixing Jekyll Service Not Accessible Inside Docker Container
  • Why I Blog / Why You Should Start Blogging Right Now